Soru & CevapHarfli İfade Ne Demektir

Harfli İfade Ne Demektir

Sponsorlu Bağlantılar

Bu makalede Harfli İfade Ne Demektir ve Harfli İfade Nedir hakkında kısa kısa bilgiler bulabilirsiniz. Lütfen not alın. Harfli İfadeler, Benzer Terim Ve Terim Hakkında Bilgi Verir Misiniz? sorusunu soran ziyaretçimize cevap vermiş olmak umuduyla…

Terimleri harflerden oluşan ifadelere verilen ad. … Harfli ifadeler toplanırken (çıkartılırken), benzer terimlerin kat sayıları toplanır (çıkartılır) ve bulunan toplamın (farkın) yanına, benzer terim çarpan olarak yazılır.

Harfli İfade Ne Demektir

Harfli İfadeler, Benzer Terim Ve Terim Hakkında Bilgi Verir Misiniz?

Soru

1.HARFLİ İFADELER NE DEMEKTİR? TERİM, BENZER TERİM NE DEMEKTİR?
2.KURALLARI ÖĞRENDİKTEN SONRA GEREKTİĞİNDE ÇÖZÜMLERİNE BAKARAK BOL ARAŞTIRMA YAPMALISIN.
3.VERİLEN SORULARIN ÇÖZÜMLERİNİ AYRINTILI BİR ŞEKİLDEÇÖZÜP RAPOR HALİNDE YAP. EN AZ 15 SORU OLSUN LÜTFEN

BAŞARILAR

DİLERİM.

ACELE OLSUN LÜTFEN

Cevap

HARFLİ İFADELER VE ÇARPANLARA AYIRMA H A R F L İ İ F A D E L E R A ) HARFLİ İFADELER: 5a, п r², 3x, x², 2y, (a-b), x²y², x+y-z, gibi ifadelere harfli ifadeler denir. KATSAYI: 3x²y türü bir ifadede 3 e katsayı denir. TERİM: Harfli ifadelerde eksi ( – ) veya artı ( + ) işaretleriyle birbirinden ayrılan kısımlara terim denir. BENZER TERİMLER: Harfleri ve harflerin kuvvetleri ( üssü ) aynı olan ifadelere benzer terimler denir. Örneğin; 5x ile 7x -2x² ile 5x² 4a ile -3a B ) HARFLİ İFADELERDE DÖRT İŞLEM: TOPLAMA VE ÇIKARMA: Harfli ifadelerde toplama veya çıkarma yapılırken benzer terimlerin katsayıları toplanır, benzer terimin harf kısmı aynen yazılır. Örnek 1: 3a²b – a²b + 4a²b + a²b = ( 3 – + 4 + 1 ) a²b = ( – + – ) a²b = a²b Örnek 2 2x²y + 3xy² + 5x²y – xy² = ( 2 + 5 ) x²y + ( 3 – 1 ) xy² = 7x²y + 2xy² ÇARPMA: Çarpma yapılırken, katsayılar çarpılır katsayı olarak yazılır. Aynı harflerin üsleri toplanır harfe üs olarak yazılır. Aynı olmayan harfler ise aynen yazılır.

Terimleri harflerden oluşan ifadelere verilen ad.
Örnek
ax2 + bx + c, 6a, 5b + c
gibi ifadeler harfli ifadedir.
Bir harfli ifadede harfler ve harflerin üsleri aynı olan ifadelere benzer terimler denir.
Harfli İfadelerle Toplama ve Çıkarma İşlemleri:
Harfli ifadeler toplanırken (çıkartılırken), benzer terimlerin kat sayıları toplanır (çıkartılır) ve bulunan toplamın (farkın) yanına, benzer terim çarpan olarak yazılır.
Örnek 1:
5a – 3a = (5 – 3)a = 2a
Harfli İfadelerle Çarpma İşlemi:
Harfli ifadeler çarpılırken
1.Kat sayılar çarpılır ve bulunan sayı, çarpımın kat sayısı olarak yazılır.
2.Tabanları aynı olan terimler çarpılırken; terimlerin üsleri toplanır ve aynı harfe üs olarak yazılır.
3.Çarpılan terimlerde farklı harfler varsa, bunlar çarpıma aynen yazılır.
Örnek 1:

Örnek 2:

Örnek 3:

Tek Terimli Bir Harfli İfadenin Çok Terimli Bir Harfli İfadeyle Çarpımı:
Bu işlem yapılırken çarpma işleminin toplama ve çıkarma işlemleri üzerindeki dağılma özeliği kullanılır.
Örnek:

İki Çok Terimli Harfli İfadenin Çarpımı:
Bu işlem yapılırken çarpma işleminin toplama ve çıkarma işlemleri üzerindeki dağılma özeliği kullanılır.
Örnek:
(x – y). (x + y) = x.(x + y) – y.(x + y)= x2 + xy – yx – y2
= x2 – y2
Tek Terimli Harfli İfadelerle Bölme İşlemi:
1. Harfli ifadeler bölünürken payın kat sayısı paydanın kat sayısına bölünür ve bulunan sayı, bölümün kat sayısı olarak yazılır.
2. Tabanları aynı olan terimler bölünürken; payın üssünden paydanın üssü çıkarılır ve aynı tabana üs olarak yazılır.
3. Tabanları farklı ifadeler bölünürken; sonuca pay ve payda olarak aynen yazılır.

Harfli ifadeler

4a, 2(x – y), x2, a + b + 3c gibi ifadelere harfli ifadeler denir.

* 3x2y ifadesinde 3 ya da 2′ye katsayı denir.
* Harfli ifadelerde, eksi (– ) veya artı (+) işaretleriyle birbirinden ayrılan kısımlara terim denir.
* Harfleri ve harflerin kuvvet (üs)leri aynı olan terimlere de benzer terimler denir.

Harfli İfadelerde İşlemler

1)TOPLAMA İŞLEMİ

Harfli ifadelerde toplama işlemi yapılırken, benzer terimlerin katsayıları kendi aralarında toplanır. Diğer terimler aynen yazılır.

ÖRNEK:5x-6y=20 ve 3x+3y=12 ÇÖZÜM:

5x-6y ve (4.5)-6y=20
(2).3x+3y 20-6y=20
=5x+6x=44 -6y=0
11x=44 y=5
x=4

2. Çıkarma işlemi

Harfli ifadelerde çıkarma işlemi yapılırken 1. benzer terimlerin katsayıları çıkartılıp sonuç olan katsayılar benzer terimlerle birleştirilip yazılır. 2. benzer olmayan sayılar ve katsayılar aynen yazılır. Böylece çıkarma işleminin sonuna gelmiş oluruz işlemi benzer terimlerle ve diğer sayılarla bir bütün oluştururlar. Yani işlemin son aşaması bizi sonuca götürür. Eğer işlemde toplama, çarpma ve bölme varsa bütün işlemler bir arada yapılır ve çıkanı sonuş olarak kabul ederiz.

3. Çarpma İşlemi

Harfli ifadelerde çarpma işlemi yapılırken, önce katsayılar kendi aralarında çarpılır. Sonra aynı harflerin üsleri toplanır. Farklı harfler ise aynen yazılr.

ÖRNEK: 3a5y x 4z8y2 = (3 x 5 x 8 x 4) x ay3z = 480ay3z İKİ

İKİ KARE FARKI

a²-b²=(a-b). (a+b) şeklinde yazılır.

iki kare toplamı [değiştir]

a²+b²=(a-b)+2ab şeklinde yazılır.

ÇARPANLARA AYIRMA

A. ORTAK ÇARPAN PARANTEZİNE ALMA

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.

B. ÖZDEŞLİKLER

1. İki Kare Farkı – Toplamı

1) a2 – b2 = (a – b)(a + b)

2) a2 + b2 = (a + b)2 – 2ab

3) a2 + b2 = (a – b)2 + 2ab

2. İki Küp Farkı – Toplamı

1) a3 – b3 = (a – b)(a2 + ab + b2 )

2) a3 + b3 = (a + b)(a2 – ab + b2 )

3) a3 – b3 = (a – b)3 + 3ab(a – b)

4) a3 + b3 = (a + b)3 – 3ab(a + b)

3. n. Dereceden Farkı – Toplamı

1) n bir sayma sayısı olmak üzere,

xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + + xyn – 2 + yn – 1) dir.

2) n bir tek sayma sayısı olmak üzere,

xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – – xyn – 2 + yn – 1) dir.

4. Tam Kare İfadeler

1) (a + b)2 = a2 + 2ab + b2

2) (a – b)2 = a2 – 2ab + b2

3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)

4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc) n bir tam sayı ve a ¹ b olmak üzere,

• (a – b)2n = (b – a)2n

• (a – b)2n – 1 = – (b – a)2n – 1 dir.

• (a + b)2 = (a – b)2 + 4ab

5. (a ± b)n nin Açılımı

Pascal Üçgeni

(a + b)n açılımı yapılırken, önce a nın n kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.

Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.

(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (– ) işareti konulur. • (a + b)3 = a3 + 3a2b + 3ab2 + b3

• (a – b)3 = a3 – 3a2b + 3ab2 – b3

• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4

• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)

• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)

• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)

a3 + b3 + c3 – 3abc =

(a + b + c)(a2 + b2 + c2 – ab – ac – bc)

C. Ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI

ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.

1. YÖNTEM

1. a = 1 için,

b = m + n ve c = m × n olmak üzere,

2. a ¹ 1 İken

m × n = a, mp + qn = b ve c = q × p ise

ax2 + bx + c = (mx + q) × (nx + p) dir.

2. YÖNTEM

Çarpımı a × c yi,

toplamı b yi veren iki sayı bulunur.

Bulunan sayılar p ve r olsun.

Bu durumda, daki ifade gruplandırılarak çarpanlarına ayrılır. __________________

Bilgiler burda şimdi ödevinizi yapabilirsiniz kolay gelsin…

 
Sponsorlu Bağlantılar
 

İlginize Değer ›

 
 
 
admin - 15 Kasım 2013
 
 

Nasıl Buldular? ›

 
harfli ifadeleri çarpanlarına ayırma kesirlerde çıkarma işlemleri harfli
 
 

Notlar ›

 
Harfli Denklemler: gibi ifadelere harfli ifadeler denir.
Harfli ifadeler: 4a, 2(x – y), x2, a + b + 3c gibi ifadelere harfli ifadeler denir.
İfade özgürlüğü: İfade özgürlüğü (ya da konuşma özgürlüğü) Birleşmiş Milletler tarafından İnsan Hakları Evrensel Beyannamesi'nde ilan edilen, birçok ülke tarafından kabul edilen bir haktır.
İfade (matematik): Herhangi bir değere eşitlenmemiş ya da bir değerle sınırlandırılmamış matematiksel tümcelere ifade denir.
İfadelerin Gramatik Ayrımı: İfadelerin Gramatik Ayrımı, Şakir Kocabaş'ın Türkiye Yazarlar Birliği, Düşünce dalı ödüllü bilim felsefesi içerikli kitabı.
 

0 Yorum ›

 

Harfli İfade Ne Demektir Hakkında Yorum Yap

Dikkat: Mesaj yazarken Harfli İfade Ne Demektir ile ilgili bilgi verirseniz site kullanıcıları da bu bilgilerinizden yararlanacaktır. Konu hakkında bilgi içeren mesajlarınızı bekliyoruz.